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METHOD OF PREDICTING RADIATION HEAT TRANSFER IN

TURBINE-COOLING TEST FACILITIES

by Herbert J. Gladden and Curt H. Liebert

Lewis Research Center

SUMMARY

A method is presented for calculating the average net radiation heat flux to turbine

vanes and blades. The heat flux at a vane leading edge calculated by this method was

compared with heat flux values independently obtained from experimental tests with solid

vanes in a cascade. The analytical method predicted the experimental heat flux data

within ±20 percent. The spectral emissivities of the vane and cascade wall materials,
required for the calculation, were also measured.

INTRODUCTION

An analytical method for calculating the average net radiation heat flux on gas tur-

bine vanes and blades was developed and then evaluated by comparing the predicted val-

ues with limited experimental radiation heat flux data. There are situations where the

radiation components of heat transfer are significant and should be considered in the

analysis of turbine cooling performance. For irstance, the net radiation heat flux in ad-
vanced high-pressure engines could be as much as 30 percent of the total heat flux to the
first-stage vane row. In practice, the net radiation heat flux is frequently assumed to be

an arbitrary percentage increase over the calculated convective heat flux. This ap-
proach, however, can be misleading. Under certain circumstances, net radiation heat

flux may be directed either to or from the vane surface. Included in these circumstances
might be (1) a cool turbine vane surface absorbing energy from a high-emittance, high-

temperature gas flame source; or (2) a hot turbine vane surface emitting to a cool sur-

rounding wall.

A simple analytical model that uses existing techniques and that can account for the

net and individual components of radiation is needed, particularly as turbine inlet tem-

perature and pressure increase. This report presents an analytical method of predicting



the net radiation heat flux to gas turbine vanes and blades and provides experimental

verification of the analysis. It would be desirable to verify, individually, the influence

of all the components comprising the net radiation heat flux; however, the available data

did not permit this completeness. The experimental net flux data used for verification

were from reference 1 for solid, uncooled vanes in a four-vane cascade tested at a gas

pressure of 3 atmospheres and a range of gas temperatures from 800 to 1100 K. In

addition, the combustor was located relatively far upstream of the vane row such that

flame radiation to the vane would be less than would be expected in an actual engine ap-

plication.

Emissivity data on the vane and the cascade wall specimens were also obtained dur-

ing separate experiments. These data were obtained at specimen temperatures of 300 to

1088 K and at wavelengths of 1 to 14. 2 micrometers.

CALCULATION PROCEDURE

The main purpose of this study was to develop a method for calculating the average

net radiation heat flux on turbine vanes and blades in engine and cascade facilities. This

method uses the general engineering relations presented in reference 2 to evaluate the

individual radiation components comprising the net radiation heat flux. A secondary

purpose of the study was to compare the predicted net radiation heat flux values with ex-

perimental net radiation heat flux data from the leading edge of J-75 size turbine vanes

tested in the cascade facility of reference 1. A side view of this facility is shown in fig-

ure 1. However, it is important to recognize that the comparison presented is only a

limited verification of the accuracy of this method. In the cascade tests the component

of the radiation heat flux from the vane to the cascade walls predominated. This test

environment did not simulate that expected in an actual engine, in which the flame radia-

tion to a vane would probably predominate. The experimental data available for com-

parison were obtained at gas temperatures of 800 to 1100 K and a gas pressure of

3 atmospheres.

Net Calculated Radiation Heat Flux

The net radiation heat flux from (or to) a given turbine vane (or blade) surface

r, net was taken as the heat flux emitted by the vane surface qv, minus the absorbed

heat flux emitted from the primary zone (flame zone region) of the combustor qf, minus

the absorbed heat flux emitted by the combustor secondary zone (dilution region) and the

intervening gas volume (combustion gas region) positioned between the combustor exit

and the vane row inlet qg, minus the absorbed heat flux emitted by the surrounding
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walls qw. This statement is expressed as

r, net = qv - qf - qg - w (1)

The symbols are defined in appendix A. The net radiation exchange between adjacent
vanes was assumed to be zero because all vanes were at essentially the same tempera-

ture. The reflective components of heat flux were assumed to be negligible because of

the attenuating effect of the intervening gas and the low values of vane and cascade wall

reflectivity involved. A further simplification was made by assuming that the emitting-

absorbing combustion gas was isothermal.

Heat flux emitted by vane surface. - The radiation heat flux emitted by a turbine

vane surface was determined by the vane surface temperature, the vane surface total
hemispherical emissivity evaluated at the surface temperature, the associated view fac-

tor from the vane to the surrounding walls, and the equation

4  (2)
qv = Fv-wE v rT

The determination of the total hemispherical emissivity of the oxidized vane material

(MAR M 302) Ev and the diffuse view factor Fv_w is discussed in subsequent sections.
Heat flux emitted by primary zone of combustor. - The radiation heat flux from the

primary (flame) zone which is transmitted through the secondary (dilution) zone and

combustion gas volume region and absorbed per vane unit area was calculated by

qf = (Fv4ffTy7Tg (3)

The primary zone was considered as that part of the combustor which operates at a
stoichiometric fuel-air ratio and temperature; the secondary zone was taken as the com-
bustor dilution region. The combustion gas was defined as that gas which occupies the
volume between the end of the combustor and the vane row inlet. In the primary zone the
major source and strength of radiation energy was carbon dioxide (CO 2), water vapor

(H2 0), and soot. The experimental data of reference 3 indicate that the primary-zone

emittance' Ef was approximately 0. 2 for the 3-atmosphere gas pressure of the refer-

ence 1 data. The method for calculating the transmittance 7g of the secondary-zone
and combustion gas region is discussed in the section Combustion Gas Emittance and

Transmittance.

1Following the nomenclature of reference 2, the -ivity ending will be used through-

out for the radiative properties of opaque materials (solids) and the -ance ending will be

reserved for the radiative properties of gases.
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The vane total hemispherical absorptivity av was assumed to equal the vane total

hemispherical emissivity. This assumption is reasonable because, as is shown in ap-

pendix B, the spectral normal emissivity of the vane material (oxidized MAR M 302)

varies little with wavelength.

Heat flux emitted by secondary zone and combustion gas. - The secondary-zone

radiation heat flux absorbed per vane unit area was lumped with the combustion gas ra-

diation heat flux and written as

qg= 4(EgOT) (4)

Because the carbon particles are rapidly burned up in the secondary zone, the emittance

of the secondary-zone and combustion gas region was assumed to be dependent only on

CO 2 and H2 0 constituents. The total hemispherical emittance of these constituents was

calculated by using Hottel's data and was based on the mean beam length (discussed

later) of an optically thick gray gas (ref. 2). The gas temperature was taken as the

average static temperature of the gas volume.

Heat flux emitted by surrounding walls. - The radiation heat flux from the surround-

ing walls, which is absorbed per unit area of the vane surface, was calculated from the

relation

qw= (FvwE w TW) g (5)

where Ew is the wall emissivity evaluated at the wall temperature and Tg is the trans-

mittance of the gas (discussed later). A nominal value was used herein for the cascade

wall temperature Tw which neglects the presence of the liner in the transition section

and considers only the temperature of the water-cooled walls of the test section since

the view factor from the vane to the liner was small (<0. 05). The gas-side temperature

of the cascade walls was determined from temperature data measured on the water side.

Total Hemispherical Emissivity

The total normal emissivity of the vane material (oxidized MAR M 302) and the

cascade wall material (plasma-sprayed aluminum oxide (A12 0 3 )) was based on the spec-

tral normal emissivity data found experimentally by using spectroscopic equipment.

This procedure is discussed in detail in appendix B. The total hemispherical emissivity

required in the calculation procedure was assumed to be equal to the total normal emis-

sivity. This assumption was reasonable because the vane surfaces and the cascade wall

surfaces were oxidized and were not optically smooth.
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Combustion Gas Emittance and Transmittance

The combustion gas mixture was composed of water vapor and carbon dioxide. The

emittance of this mixture was evaluated with the following relation (ref. 2):

g = CCO2 ECO2 + CH2OEH20 - AE' (6)

The values of the parameters in equation (6) were obtained from figures 17-11 to 17-15

of reference 2. These values are a function of the partial pressure of the water vapor

and carbon dioxide, the mean beam length (gas-to-surface exchange) of an optically thick

gas, and the static gas temperature. This mean beam length (an average gas path length)

is expressed as

Le = 3.6 Volume of gas (7)
Surface area of gas volume

As discussed in reference 2, the mean beam length is the required radius of a gas

hemisphere that radiates a flux to the center of its base equal to the average flux radi-

ated to the area of interest by the actual volume of gas. For proper use of equations

(6) and (7), the enclosure boundary should be essentially nonreflecting.

The transmittance of the combustion gas mixture is related to the absorptance by

g = 1 - a (8)

The absorptance of the gas was evaluated with the following relation (ref. 2):

&gC =CCO2ECO2 +CH 2 O' H20OI - a (9)
Lw(or f) w(or f)

where EH2 O ' CO 2, and ,a' were obtained from figures 17-11 to 17-15 of reference 2

but were evaluated at Tw or Tf. As discussed in reference 2, EC02 and E 20 were

evaluated by using the geometric mean beam length (surface-to-surface exchange),

which is a mean value of the path length of gas between the vane and the surrounding

walls or the primary-zone flame. For convenience, the geometric mean beam length

was assumed to equal the mean beam length. This assumption is reasonable because

the volume of gas viewed by a given vane surface (and therefore considered for the cal-

culation of the path length Le ) is mostly contained by the tunnel walls. The cascade

geometry associated with evaluating Le for a given dAv is shown in figure 2(a). The
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volumes and areas were determined from a 10-times-size layout of the cascade sections

of reference 1. Some additional details of the cascade geometry are given in appen-

dix C.

Diffuse View Factors

In general, a given vane surface element (ref. 1) will view all of a wall within that

surface element's hemispherical viewing field, minus that part of a wall which is blocked

from view by an adjacent vane. That is, the view factor Fv_w (eqs. (2) and (5)) is al-

ways unity minus the view factor from the surface element to that part of a wall which

cannot be "seen" by the surface element. This relation is expressed as

Fv_w = 1 - F* (10)

A typical representation of this idea, as applied to the cascade, is shown schemat-

ically in figure 2(b), where F* pertains to those regions within the dashed lines. Typi-

cal leading-edge suction surface and pressure surface vane-to-cascade-wall view factors

(fig. 3) were calculated by using a differential line source at an angle p (ref. 4). The

view factor from the vane to the primary zone of the combustor used herein was repre-

sented by a ratio of differential vane surface area to an annular flame surface area (cal-

culated as 0. 0069).

The calculated view factors and mean beam lengths for the three regions of each

vane of reference 1 are presented in table I.

Net Radiation Heat Flux from Reference 1 Data

The experimental net radiation heat flux values were obtained from solid vanes in a

four-vane cascade (ref. 1). A heat balance on an element of a vane shows that the net

radiation component of heat transfer was the difference between the gas-side convection

heat flux and the conduction losses

qr, net, exp = conv -cond (11)

The convection component was defined as follows:

qconv= hg, calc(Tge Twm) (12)
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For the leading-edge region, hg, calc was calculated by equation (13), which is
typically used to find the local gas-side heat transfer coefficient around the leading edge
of a turbine vane. The effective gas temperature T e was calculated from the meas-

ured inlet total temperature and a turbulent recovery factor; the vane wall temperature
Twm was measured.

Nu = 1. 14 Re Pr 1 - ) (13)

The conduction component of heat flux was the sum of the chordwise and spanwise terms

x dT
qcon = k (14)

Temperature products were determined from chordwise and spanwise experimental tem-

perature profiles.

COMPARISON OF PREDICTED AND EXPERIMENTAL DATA

The average net radiation heat flux from the leading edge of turbine vanes as deter-

mined from the experimental data of reference 1 (using eq. (11)) was compared with that

calculated by equation (1). This comparison is shown in figure 4. The magnitude of

qr, net and of each term of equation (1) is shown in table II. The heat flux from three

regions of the leading edge is presented. These regions are (1) the stagnation region

(thermocouple 1 of insert to fig. 4), (2) the suction surface (thermocouple 2 of insert to

fig. 4), and (3) the pressure surface (thermocouple 3 of insert to fig. 4). Table II shows

that the radiation heat flux from the vane surface was predominant. The sum of the re-

maining heat flux terms (flame, combustion gas, and cascade walls) was between 20 and

30 percent of that from the vane surface.

The dashed lines in figure 4 show that equation (1) predicts the majority of the ex-

perimental data within ±20 percent. This is considered as good agreement, since it has

been estimated (ref. 1) that the net experimental heat flux calculated by equation (11)

could be in error by ±20 percent because of the correlation spread and the measurement

error. In addition, the predicted data could be in error by about ±10 percent because of

the error associated with the measured spectral emissivities (±3 percent) and the un-

certainty associated with the simplifying assumptions.
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Because very little information was available concerning the vane material of refer-

ence 1 (oxidized MAR M 302), emissivity data for this material were measured; the

results are presented in appendix B.

CONCLUDING REMARKS

A method of calculating the net radiation heat flux to turbine vanes or blades by

using available engineering relations was developed. As a partial check the method was

applied to some experimental data which were dominated by the radiation heat flux

emitted by the solid vanes. Data were not available to check cases where the flame or

the combustion gas radiation heat fluxes were dominant. For the case studied the ana-

lytical method predicted the experimental data within ±20 percent.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 18, 1974,
505-04.

8



APPENDIX A

SYMBOLS

A area

b I  constant in eq. (BI), 1. 2864x10- 15 W cm-2 m-I K-5

C pressure correction coefficient in eqs. (6) and (9)

F diffuse view factor

h heat transfer coefficient

k thermal conductivity

Le mean beam length

Nu Nusselt number

Pr Prandtl'number

q heat flux per unit area

Re Reynolds number

T temperature

WX spectral intensity of a black body

WXm maximum spectral intensity of a black body

x distance

a total hemispherical absorptivity (absorptance)

A', AE' correction for spectral overlap

E total hemispherical emissivity (emittance)

St, n total normal emissivity

E spectral normal emissivity

0 angle measured from stagnation point

X wavelength

a Stefan-Boltzmann constant, 5. 669x10 - 12 W cm - 2 K- 4

T transmittance

'p angle between plane of line source and rectangle (figs. 2 and 3)

Subscripts:

CO 2  carbon dioxide
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calc calculated

cond conduction

cony convection

exp experimental

f flame

g gas

ge effective gas

H2 0 water vapor

net net

r radiation

s specimen

v vane surface

v-f from vane surface to flame

v-w from vane surface to cascade wall

w cascade wall

wm measured vane surface

Superscripts:

* associated with diffuse view factor from a given vane surface element to that part

of the cascade wall blocked from view by adjacent vane (eq. (10))

+ quantities defined in eq. (9)

10



APPENDIX B

TOTAL HEMISPHERICAL EMISSIVITY OF CASCADE WALL AND VANE MATERIAL

The total normal emissivity can be found from the following equation:

Et, N - s EX dX (B 1)
0 WXM

where the normal spectral emissivity E is usually experimentally determined. Values
of WX/WXm were obtained from reference 5, where the product EX(Wx/WXm) is a
function of wavelength for various surface temperatures T s . The total normal emis-

sivity was calculated from the product of blTs/a and the integrated terms.
Figure 5 shows the measured normal spectral emissivity of the cascade wall mate-

rial (Al20 3) coated onto stainless steel and the vane material (oxidized MAR M 302)
for wavelengths of 1 to 14. 2 micrometers. The emissivity values were obtained

by using a recording infrared spectrophotometer (ref. 6). At the temperatures studied
(300, 800, and 1080 K) the normal spectral emissivity varied little (±3 percent) with
temperature. The dashed lines indicate values of data taken from reference 7 which
were also needed to calculate Et, N The total normal emissivity values so obtained
were assumed to equal the total hemispherical emissivity.

The A12 0 3 -insulated cascade walls of reference 1 were covered with a coating of

soot during operation. Thus, the radiative properties of the cascade walls could depend
on the properties of both the layer of soot and the A120 3 coating. (The A120 3 coating is
opaque, and so the radiative properties of the steel walls will not affect the composite
emissivity.) The EX of the soot-A12 0 3 composite could not be measured because it was
difficult to obtain a sample of the composite during cascade operation. However, be-
cause the total normal emissivity of both A12 0 3 and rough carbon samples (ref. 8) is
about 0. 85 at cascade wall operation temperatures (360 to 470 K), the emissivity of the

composite of the two materials was also taken as 0. 85.

The soot was rapidly oxidized at the vane testing temperatures of 800 to 1100 K

(ref. 9). The vane emissivity, therefore, is the composite emissivities of MAR M 302

alloy and a thin layer of oxide. The spectral emissivity of the alloy composite (fig. 5)

varied from about 0. 78 to 0. 97. Evaluating the total normal emissivity Et, N at a com-

posite temperature of 800 to 1000 K resulted in a value of 0. 85±0. 02.

Because the total normal emissivities of both the vane and the tunnel walls were

about 0. 85, the assumptions of negligible vane-to-vane and vane-to-cascade-wall re-

flectivity previously discussed are reasonable.
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For a gray surface, the total hemispherical absorptivity equals the total hemispher-

ical emissivity. The spectral emissivity of the vane (fig. 5) varies little with wavelength

and thus the assumption of av = Ev for the vane surface is justifiable.
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APPENDIX C

EXPERIMENTAL APPARATUS OF REFERENCE 1

A four-vane, five-flow-channel cascade was used in reference 1 to obtain the ex-
perimental average net radiation heat flux data presented herein. A detailed description
of this facility is given in references 1 and 10. Briefly, the facility consisted of an in-
let section, a burner section, a transition section, a test section, and an exit section,
as shown schematically in figure 1. The test and exit section walls were water cooled

and insulated on the gas side by plasma-sprayed A12 0 3 (0. 5 mm thick). The transition
section had an Al 2 0 3 -sprayed liner between the water-cooled walls and the hot gas. The
test section was a 230 annular sector of a J-75 vane row and contained four solid, non-
cooled vanes. These vanes (cast MAR M 302) had a span of 9.78 centimeters and a
chord of 6. 28 centimeters. A cross-sectional schematic of the test section is shown in
figure 6. The central vanes were considered the test vanes and contained the majority
of the thermocouples. The outer two vanes completed the flow channels for the test
vanes and als6 served as radiation shields between the test vanes and the water-cooled
cascade walls!.

The vanes were tested at combustion gas temperatures from 810 to 1140 K and a gas
pressure of about 3 atmospheres, which corresponds to an inlet gas Reynolds number
range of 4x10 4 to 6x10 4 . The temperature of the cascade walls (gas side) was deter-
mined from the coolant-side temperature measurements to be 360 to 470 K.
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TABLE I. - VIEW FACTORS AND MEAN BEAM LENGTHS FOR SELECTED AREAS

OF FOUR TURBINE VANES IN A CASCADE

Region View factor, Vane

F and
v-w 1 2 3 4

mean beam

length, Le

Leading-edge, stagna- Fv 1. 1. 1.0 1.0 1. 0

tion region Le, m (ft) 0. 183 (0. 6) 0. 183 (0. 6) 0. 183 (0. 6) 0. 183 (0. 6)

Leading-edge, suction- F _ 0.929 0.914 0. 890 1.0

surface region Le, m (ft) 0. 183 (0. 599) 0. 183 (0. 602) 0. 184 (0. 603) 0. 185 (0. 606)

(thermocouple 2,
fig. 4)

Leading-edge, F _ 1.0 0. 883 0. 904 0. 923

pressure-surface Le, m (ft) 0. 184 (0. 605) 0. 184 (0. 604) 0. 183 (0. 601) 0. 183 (0. 599)

region (thermo-

couple 3, fig. 4)-
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TABLE II. - CALCULATED NET RADIATION HEAT FLUX DATA BASED

ON REFERENCE 1 TEST DATA

[qr,net = q- qf - qg - qW

Run Vane

2 3 Flame heat 2 3 2 3 2 3

flux,
Vane surface Gas heat flux, Cascade Net heat flux,

heat flux, W/m2 q 2 wall heat r,net'

qv W flux, W/m 2

W/m 2  
qw'

W/m

Leading-edge, stagnation region

1 19 550 19 000 1760 2 610 2 610 0 7 750 16 200 15 650

2 33 610 33 750 4 960 4960 715 715 27 950 28 080

3 ------ 52 650 8 080 8 080 1216 1216 ----- 43 380

4 ------ 77 450 12 050 12 050 1173 1173 ------ 64 250

Leading-edge, suction-surface region

1 17 570 16 860 1245 2 610 2 610 687 668 14 290 13 600

2 30 600 29 900 4 960 4 960 652 637 24 980 24 300

3 46 700 46 670 8 080 8 080 1110 1080 37 480 37 500

4 70 700 68 650 12 050 12 050 1070 1043 57 600 55 600

Leading-edge, pressure-surface region

1 16 660 ------ 1245 2 610 ------ 662 ---- 13 710

2 29 530 ------ 4 960 ------ 631 ---- 23 950

3 45 100 ------ 8 080 ------ 1070 ---- 35 950

4 68 400 12 050 ------ 1036 ---- 55 300
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2.90 m

,Instrumentation port

fuel suppRadiation shield lyater-cooed" he uple

29.7 cm- 83.6 cm 81.0 cm 34.5cm 60.7cm

Figure 1. - Schematic cross-sectional view of four-vane cascade facility.
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Typical differential
ane surface area

-, Typical representation
/ of gas volume used to

/ determine the mean
length by eq. (7)

Flow channel 1 2 3 4 / 5

(a) Mean beam length.

~ Extension of cascade wall

r Vane 3 view of
/ cascade wall

cascade wall F vane 4
blocked by F- FF
vane I ane 2 3

-2- 3 -4-
Flow channel \ /

V ypical differential
vane surface area

(b) Diffuse view factors.

Figure 2. - Cross-sectional view of vanes and test section showing typical layout used
to determine mean beam lengths and diffuse view factors.
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Portion of cascade /1 /- Cascade wall extension
wall blocked from /
"view" by an
adjacent vane

- Differential line
area of vane wall

(

Figure 3. - Configuration for determination of diffuse view factor F*.

70x103

E 20 percent +20 percent

60- 1 /
2 /

Typical thermocouple-9 50-
Slocations on test vanes /

./ / Leading-edge
- . region

I 20- / / O0 Stagnation
S/ / O0 Suction surface

/ " 0 Pressure surface

S10 - /Open symbols denote vane 2
Solid symbols denote vane 3

0 10 20 30 40 50 60 70 80x103

Experimental net radiant heat flux, qr, net, exp (le. (11)), W/m2

.Figure 4. - Comparison of calculated net radiation heat flux and experi-
mental net radiation heat flux from reference 1.
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"-- " - -AI 203 standard

.2-

' .6

S .4- Data from ref. 7

Region of measured emissivity

0 2 4 6 8 10 12 14 16 18 20 22
Wavelength, X, pm

Figure 5. - Spectral normal emissivity of A120 3 and oxidized Mar M-302 at 300 to 1088 K.

A Static pressure
O Total temperature

D Total pressure

Exnletit flow
direction

S 0 D626

3020 NA -End wall
Vane 1 2 3 4

Flow channel 1 2 3 4 5

Inlet flow
direction

O D

Figure 6. - Plan view of four-vane cascade facility of reference 1.
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